Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bo Yang, You-Feng Xia, Sai Bi and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.121$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

2-(4-Methoxybenzoylamino)benzimidazole

The asymmetric unit of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$, contains two molecules. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules, forming infinite chains along the a axis The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Benzimidazoles have wide applications because of their structural characteristics (Liao et al., 1996; Bag et al., 1996). As medicine intermediates, they have broad biological activity (Lunn et al., 1996; Xu et al., 1996). Thus, they have been intensely studied over several decades. As part of our ongoing research on benzimidazole derivatives, the title compound, (I), was synthesized.

(I)

The asymmetric unit of (I) contains two molecules (Fig. 1). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The benzimidazole units, C1-C7/ N1/N2 and C16-C22/N4/N5, are essentially planar. The dihedral angles between rings $A(\mathrm{C} 1-\mathrm{C} 6), B(\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 2), D$ (C16-C21) and $E(\mathrm{C} 16 / \mathrm{C} 21 / \mathrm{C} 22 / \mathrm{N} 4 / \mathrm{N} 5)$ are $A / B=0.66(1)^{\circ}$

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines. Dashed lines indicate hydrogen bonds.
and $D / E=1.53(1)^{\circ}$. The dihedral angles between the benzimidazole units $\mathrm{C} 1-\mathrm{C} 7, \mathrm{~N} 1, \mathrm{~N} 2$ and $\mathrm{C} 16-\mathrm{C} 22, \mathrm{~N} 4, \mathrm{~N} 5$ and the benzene rings $C(\mathrm{C} 9-\mathrm{C} 14)$ and $F(\mathrm{C} 24-\mathrm{C} 29)$ are 16.73 (1) and $51.04(1)^{\circ}$, respectively. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) result in the formation of six-membered rings (Fig. 1).

In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) link the molecules, forming infinite chains along the a axis (Fig. 2). The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2). The short distances $C g 1 \cdots C g 1^{\text {iv }}(3.708 \AA)$ and $C g 1 \cdots C g 3^{\text {iv }}(3.596 \AA)$ [symmetry code: (iv) $-x, 1-y, 1-z$], where $C g 1$ and $C g 3$ denote the centroids of rings B and A, respectively, indicate $\pi-$ π interactions between the benzimidazole units.

Experimental

2-Aminobenzimidazole $(6.65 \mathrm{~g}, 73 \mathrm{mmol})$ and 4-methoxybenzoyl chloride $(8.55 \mathrm{~g}, 50 \mathrm{mmol})$ were added to a solution of dry pyridine (50 ml). The solution was filtered after stirring for 6 h at 373 K . A white solid was obtained and dried (yield 85%, m.p. $512-515 \mathrm{~K}$). The product was dissolved in methanol/ethyl acetate (1:2). After filtration, the colorless filtrate was left at room temperature. Single crystals suitable for X-ray crystallographic analysis were obtained.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} & Z=8 \\
M_{r}=267.28 & D_{x}=1.362 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Monoclinic, } P 2_{1} / c & \text { Mo } K \alpha \text { radiation } \\
a=10.158(2) \AA & \mu=0.09 \mathrm{~mm}^{-1} \\
b=24.784(5) \AA & T=294(2) \mathrm{K} \\
c=10.474(2) \AA & \text { Block, colorless } \\
\beta=98.626(3)^{\circ} & 0.41 \times 0.16 \times 0.12 \mathrm{~mm} \\
V=2607.0(9) \AA^{3} &
\end{array}
$$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.963, T_{\max }=0.989$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.121$
$S=1.04$
5111 reflections
361 parameters
H -atom parameters constrained

14506 measured reflections
5111 independent reflections
3791 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=26.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0493 P)^{2}\right. \\
& \quad+0.5412 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }= \\
& \hline 0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C8	$1.229(2)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.367(2)$
O2-C12	$1.359(2)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.383(2)$
O3-C23	$1.227(2)$	$\mathrm{N} 6-\mathrm{C} 23$	$1.367(2)$
$\mathrm{O} 4-\mathrm{C} 30$	$1.422(3)$	$\mathrm{N} 6-\mathrm{C} 22$	$1.375(2)$
C12-O2-C15	$117.70(17)$	$\mathrm{C} 23-\mathrm{N} 6-\mathrm{C} 22$	$125.47(16)$
C27-O4-C30	$118.6(2)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	$115.96(17)$
C8-N3-C7	$125.68(16)$	$\mathrm{N} 6-\mathrm{C} 23-\mathrm{C} 24$	$114.70(16)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5B $\cdots \mathrm{Cg}^{\text {i }}$	0.93	2.80	3.515	135
C15-H15B $\cdots \mathrm{Cg} 1^{\text {ii }}$	0.96	2.71	3.319	121
$\mathrm{C} 19-\mathrm{H} 19 \mathrm{~A} \cdots \mathrm{Cg} 2^{\text {iii }}$	0.93	2.89	3.728	151
$\mathrm{C} 25-\mathrm{H} 25 A \cdots \mathrm{Cg} 2^{\text {i }}$	0.93	2.99	3.558	120
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.86	2.21	2.716 (2)	117
$\mathrm{N} 1-\mathrm{H} 1 A \cdots 3^{\text {iv }}$	0.86	2.32	3.072 (2)	145
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{~N}{ }^{\text {i }}$	0.86	2.19	2.979 (2)	152
N4-H4A . O 3	0.86	2.25	2.733 (2)	116
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\text {iv }}$	0.86	2.52	3.240 (2)	142
$\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{~N}{ }^{\text {i }}$	0.86	2.08	2.845 (2)	147

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $x,-y-\frac{1}{2}, z-\frac{3}{2}$; (iv) $-x,-y+1,-z+1 . C g 1, C g 2$ and $C g 6$ denote the centroids of rings B, E and F, respectively.

H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, where $x=1.5$ for methyl and $x=1.2$ for all other H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. 05-2-JC-80) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bag, S. K., Chakraborty, S. B. \& Chaudhuri, S. R. (1996). J. Indian Chem. Soc. 73, 113-118.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Liao, Z. R., Fu, H. H., Tian, T. L., Cai, H. L. \& Liu, W. Q. (1996). Prog. Biochem. Biophys. 23, 159-163.
Lunn, W. H. W., Monn, J. A. \& Zimmerman, D. M. (1996). US Patent No. 5552 426.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

organic papers

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Xu, Z.-G., Xu, P.-F. \& Wu, S.-Z. (1996). Hechneghuaxue, 4, 137-140. (In Chinese.)

